CPSC-313 Introduction to Computer Systems Introduction

Introduction to OSs

What is an Operating System?

Architectural Support for Operating Systems

System Calls

Basic Organization of an Operating System

Introduction to OSs

e What is an Operating System?

CPSC-313 Introduction to Computer Systems Introduction

What is an operating system?

e What an operating system is not:

- An o.s. is not a language or a compiler
- An o.s. is not a command interpreter / window system
- An o.s. is not a library of commands

- An o0.s. is not a set of utilities

A Short Historical Tour

e First Generation Computer Systems (1949-1956):

- Single user: writes program, operates computer
through console or card reader / printer

- Absolute machine language
- I/0 devices
- Development of libraries; device drivers

- Compilers, linkers, loaders
- Relocatable code

CPSC-313 Introduction to Computer Systems

Programming Early Machines

Wiring the ENIAC with a new program
(U.S. Army photo, from archives of the ARL Technical Library)

Second-Generation Computers (1956-1963)

- Problems: scheduling, setup time

- Automation of Load/Translate/Load/Execute
e Batch systems
e Monitor programs

_T, T control card interpreter
job sequencer / loader

device drivers

e Job Control Language
e Advent of operators: computers as input/output box

- Problem: Resource management and I/0 still under control of
programmer

e Memory protection
e Timers
e Privileged instructions

Introduction

CPSC-313 Introduction to Computer Systems Introduction

Example: IBM Punch Card System

Card Punch

Card Sorter

Card Verifier

(Computer Museum of America)

Batching Program Execution

CPSC-313 Introduction to Computer Systems Introduction

Overlapping CPU and 1/0 Operations

Traditional Batch Operation:
—— 11— - — 1

card reader CPU line printer

Off-Line Processing:

—6@ 6———3
—60 @i eo—(—23
—60 eo—(——3
[E— CPU [g —
card readers line printers
Spooling; I/0O Channels: disk
L1 L]
card reader CPU line printer

Off-Line vs. Pure Batch

batch

card

reader B O o A S
cPU . s 5 s
printer ------------==-- I 1 C— 1

off-line (single set of card reader/printer)

rewind setup

card reader| I I l//

tape reader- ... O

CPU e e I
tape reader-----------tmomoomomoooomoooomoooooooooooo L

printer ----mmmomommomommomoooomosoosooooooooooooooooooos /"""f"l I ! -

setup rewind

CPSC-313 Introduction to Computer Systems Introduction

Off-Line vs. Pure Batch (II)

- batch
card
reader O [
cPU - [.
printer------=----==--- 1 1 1

- off-line (multiple of card readers/printers)

AR SRR SR
card reader.| I I L o L
R 1 R
tape reader ... -:Ilﬂﬂ ___________________________________
CPU [
B
tape reader---------m--sssmmmmmmoosoomoooo oo "-.:E:l_
2] g =] e ' . . '

Third-Generation Computer Systems (1964-1975)

- Problem with batching: one-job-at-a-time

sequential: cPU D D RREE
vo L] —
better: ceu []] EE Job2

Job3
vo []

- Solution: Multiprogramming
- Job pools: have several programs ready to execute
- Keep several programs in memory

- New issues:

- Job scheduling
- Memory management
- Protection

CPSC-313 Introduction to Computer Systems

Time Sharing (mid 1960s on)

e OS inferleaves execution of multiple user programs with time
quantum

- CTSS (1961): time quantum 0.2 sec
e User returns to own the machine

e New aspects and issues:
- On-line file systems
- resource protection
- virtual memory
- sophisticated process scheduling

e Advent of systematic techniques for designing and analyzing OSs.

The Recent Past

e Personal computers and Computing as Utility
- History repeats itself
e Parallel systems
- Resource management
- Fault tolerance
e Real-Time Systems
e Distributed Systems
- Communication
- Resource sharing
- Network operating systems
- Distributed operating systems
® Secure Systems

Introduction

CPSC-313 Introduction to Computer Systems Introduction

The Future?

e The “Invisible Computer”
e Computing-in-the-ultra-small
e Speed vs. Power vs. Heat

e Breaking up the layered design

What, then, is an Operating System?

e Controls and coordinates the use of system resources.

e Primary goal: Provide a convenient environment for a user to access
the available resources (CPU, memory, I1/0)

- Provide appropriate abstractions (files, processes, ...)
- “virtual machine”

e Secondary goal: Efficient operation of the computer system.

e Resource Management
- Transforming: Create virtual substitutes that are easier to use.

- Multiplexing: Create the illusion of multiple resources from a
single resource

- Scheduling: "Who gets the resource when?”

CPSC-313 Introduction to Computer Systems

Resources

Disks and other Devices

Timers / Clocks Locks

cPU 4— Memory

Power / Heat

1/0 Controllers

The OS as Servant to Two Masters

Devices Clocks&Timers Locks Memory Heat&Power I/0 Controllers CPUs

CTIT T

0s

1L]

Performance Plug&Play Security Predictability | Convenience

Fault-Tolerance Power-Effectiveness

Introduction

CPSC-313 Introduction to Computer Systems

Introduction to OSs

e Architectural Support for Operating Systems

Architectural Support for OS's

e Dealing with Asynchronous Events: Exceptions, Interrupts
- Modern OS's are interrupt-driven (some still are not!).
- Simple interrupt handling vs. exception handling MIPS-style.

e Hardware Protection
- Privilege Levels (e.g. user/kernel/supervisor, efc.)
- Priviledged instructions: typically CPU control instructions
- I/0 Protection
- Memory Protection

e Support for Address Spaces

e Timers

Introduction

10

CPSC-313 Introduction to Computer Systems Introduction

Modern OS’s are Interrupt-Driven

cPU

servicing
intferrupt H ’7‘ (‘
process

A A

executing

IO Device [
busy U
idle

keyboard

pressed H

idle

Interrupts / Exceptions

e When an interrupt occurs, CPU stops, saves state, typically changes into
supervisor mode, and immediately jumps to predefined location.

e Appropriate interrupt service routine is found through the interrupt
vector.

e Return-from-interrupt automatically restores state.

0000

interrupt vector area

interrupt xy — p xy [

XXXX

interrupt
service
routine

Interrupts/Exceptions can be invoked by asynchronous events (I/0
devices, timers, various errors) or can be software-generated (system
calls).

11

CPSC-313 Introduction to Computer Systems

Exceptions, MIPS-Style

e MIPS CPU deals with exceptions.
- Interrupts are just a special case of exceptions.

e The MIPS Architecture has no interrupt-vector table!

- All exceptions trigger a jump to the same location, and de-
multiplexing happens in the exception handler, after looking up
the reason for the exception in the CAUSE register.

exception——»
exception
handler

specific
service
routine

A

MIPS Exception Handler (low-level)

| xcptlow_handler |

set up exception frame
on stack

save enough registers
to get by

save rest of registers

call C exception handler

restore registers

return from exception

Introduction

12

CPSC-313 Introduction to Computer Systems

Hardware Protection

e Originally: User owned the machine, no monitor. No protection
necessary.

e Resident monitor, resource sharing: One program can adversely
affect the execution of others.

e Examples

halt and other instructions

modify data or code in other programs or monitor itself
- access/modify data on storage devices
- refuse to relinquish processor

e Benign (bug) vs. malicious (virus)

Hardware Protection (2)

e Dual-mode operation
- user mode vs. supervisor mode
- e.g. halt instruction is privileged.
e I/0 Protection
- define all I/0 operations to be privileged
® Memory Protection
- protect interrupt vector, interrupt service routines
- determine legal address ranges

cPU »>

memory

trap to operating system!

Introduction

13

CPSC-313 Introduction to Computer Systems

Timers

e Timers can be set, and a trap occurs when the timer expires.
(And OS acquires control over the CPU.)

e Other uses of timers:
- time sharing
- time-of-day

Introduction to OSs

e System Calls

Introduction

14

CPSC-313 Introduction to Computer Systems

External Structure of an OS

The outsider’s view of the OS.

applications programs/

processes
.
i system call
system call
— T interface
A
R = 2 -, kernel
.)
e AN
7 Na
= — j——' device drivers

| hardware

System Calls

Provide the interface between a process and the OS.

Example: vanilla copy:

int copy(char * fnamel, *fname2) ({
FILE *f, *g;
char c;
f = fopen (fnamel, “r”);
g = fopen (fname2, “w”);
while (read(f, &c, 1) > 0)
write(g, c, 1);
fclose () ;
fclose (9) ;

Introduction

15

CPSC-313 Introduction to Computer Systems

System Call Implementation: Linux on x86

e Example:

_syscall (int, setuid, uid t, uid)
e expands to:

_setuid:

subl $4,%exp

pushl %$ebx

movzwl 12(%esp),%eax

movl %eax,4(%esp)

movl $23,%eax <<<---- System Call number (setuid = 23)
movl 4(%esp),%tebx

int $0x80 <<<---- call transfer to kernel entry point _system call()

movl %eax, %edx
testl %edx, %edx
jge L2

negl %edx

movl %edx,_errno
movl $-1,%eax
popl %ebx

addl $4,%esp

retL2:

movl %edx, %eax
popl %ebx

addl $4,%esp
ret

Why Interrupts?

Reason 2:

Reason 3:

Reason 4:

Reason 1: Can load user program into memory without
knowing exact address of system procedures

Separation of address space, including stacks:

user stack and kernel stack.

Automatic change to supervisor mode.

Can control access to kernel by masking
interrupts.

Introduction

16

CPSC-313 Introduction to Computer Systems Introduction

Reason?2: Buffer Overrun Attacks (siberschatz et al)

#include <stdio.h> [Example and illustrations from Silberschatz et al. “Operating Systems Concepts” Ch. 15]
#define BUFFER SIZE 256

int main(int argc, char *argv[]) botiom ~<— Trame pointe
{ return address
char buffer [BUFFER SIZE];
if (argc < 2) saved frame pointer
return -1; rows
else {
strcpy (buffer,argv[1]) ; automatic variables
return 0;
} parameter(s)
} top
i F
return address address of modified
shell code
saved frame pointer A
NO ‘OP
butfer(BUFFER_SIZE - 1) i . #include <stdio.h>
oples
< int main(int argc, char *argv[])
{
butfer(1) modified shell code execvp (' ‘\bin\sh’’, ‘\bin \sh’’, NULL);
return 0;
butfer(0)
L }
(a) (b)

Stack Separation sufficient?

e Buffer overruns in kernel code?

e Device drivers?

17

CPSC-313 Introduction to Computer Systems

Reason 4: Mutual Exclusion in Kernel

1 2 user process 2

user space trap
kernel l ‘ Urﬁ
process 1 executing in kernel process 2 can not enter unmask interrupts
interrupts are masked kernel because of and return

masked interrupts

Introduction to OSs

e Basic Organization of an Operating System

Introduction

18

CPSC-313 Introduction to Computer Systems

External Structure of an OS

The outsider’s view of the OS.

processes
3
I system call
system call
— T — interface
)|
) P = 2 =, kernel
.)
v AN
7 Na
—_— =~ =~ =~ =~ [——'device drivers

| | hardware

applications programs/

Internal Structure: Layered Services

The insider’s view of the OS.
Example: XINU [Comer 1984]

euser programs

efile system

eintermachine network communication
edevice manager and device drivers
ereal-time clock manager
sinterprocess communication

eprocess coordinator

eprocess manager

ememory manager
C ehardware

Introduction

19

CPSC-313 Introduction to Computer Systems

Internal Structure: u-Kernels

e Layered Kernels vs. Microkernels

] A
| user | | user |
user
<
£ FY 3|3
@0 < =) -+
o = =19 c
file system = Slels|s >
o b n
3 |8 3 user
1PC 3 212|818
® slIe|3]3
a 2171818
kernel 1/0 and device management @ 5L
virtual memory
J
process management | m-kernel 1|>— kernel
hardware hardware

layers.

Hierarchical decomposition.
Interaction only between adjacent

Kernel has only core operating system
functions (memory management, IPC,

1/0, interrupts)
Other functions run in server
processes in user space.

Operations in a u-Kernel

user

file system server

A

u-kernek

open_file request

Fle Fardle

e Non-kernel components of the OS are implemented as server processes.
e Communication between user and servers using messages through kernel.
e ‘“client-server architecture within a single computer”

e Examples: Mach, Windows NT, Chorus, L4, ...

Introduction

20

CPSC-313 Introduction to Computer Systems

Windows 2000 System Structure

_ . POSIX
OS2 Application ApDIK Application

£OSIX
Subsystem Subsystem 4

User Mode
Kernel Mode

PC Vemory [l Process [l Fv38 Power
y
o v, | Monecer [l Manoger [l tanoger | | TOY Manager
| I
Hardware Abstraction Layer (HAL)
I Executive
Hardware

Figure 2.— System architecture

Windows
Manager

Graphics
Device
Drivers.

Benefits of u-Kernels

Extensibility:
- New services can be added by adding server processes.
Flexibility:
- Services can be customized.
Portability:
- Kernel small, with well-defined interface.
Distributed System Support:
- Interface between users and services is message-based.

Introduction

21

CPSC-313 Introduction to Computer Systems Introduction

u-Kernels: Performance is Problem

user server
A
c—{\, reply (J"‘)
u-kernel\ gy
request

® Request traverses user/kernel boundary twice, same for reply.
e Solutions:
- Move critical services back into the kernel ("make kernel
bigger”)
- Make kernel “smaller”

Why are OSs so Slow?

(Why Aren’t Operating Systems Getting Faster As Fast As Hardware? John Ousterhout, 1989)

Hardware Abbreviation RISC/CISC MIPS

MIPS M2000 M2000 RISC 20

DECstation 3100 DS3100 RISC 13

Sun-4/280 Sun4 RISC 9

VAX 8800 8800 CISC 6

Sun-3/75 Sun3 CISC 1.8

Microvax Il MVAX2 CISC 0.9

Table 1: Hardware Platforms Configuration Time MIPS-Relative
(microseconds) Speed

M2000 RISC/os 4.0 18 0.54
DS3100 Sprite 26 0.49
DS3100 Ultrix 3.1 25 0.60
8800 Ultrix 3.0 28 1.15
Sun4 SunOS 4.0 32 0.68
Sun4 Sprite 32 0.58
Sun3 Sprite 92 1.0
Sun3 SunOS 3.5 108 1.0
MVAX2 Ultrix 3.0 207 0.9

Table 2: Getpid kernel call time

22

CPSC-313 Introduction to Computer Systems

Why are OSs so Slow?

(2)

Hardware Abbreviation RISC/CISC MIPS

MIPS M2006 M2000 RISC 20

DECstation 3100 DS3100 RISC 13

Sun-4/280 Sun4d RISC 9

VAX 8800 8800 CISC 6

Sun-3/75 Sun3 CISC 1.8

Microvax Il MVAX2 CISC 0.9

Table 1: Hardware Platforms Configuration Time MIPS-Relative
(ms) Speed

M2000 RISC/os 4.0 0.30 0.71
DS3100 Ultrix 3.1 0.34 0.96
DS3100 Sprite 0.51 0.65
8800 Ultrix 3.0 0.70 1.0
Sund SunOS 4.0 1.02 0.47
Sun4 Sprite 1.17 0.41
Sun3 SunOS 3.5 2.36 1.0
Sun3 Sprite 2.41 1.0
MVAX2 Ultrix 3.0 3.66 1.3

Table 3: Cswitch: echo one byte between processes using pipes.

Introduction

23

